240 research outputs found

    Sources of unbounded priority inversions in real-time systems and a comparative study of possible solutions

    Get PDF
    In the design of real-time systems, tasks are often assigned priorities. Preemptive priority driven schedulers are used to schedule tasks to meet the timing requirements. Priority inversion is the term used to describe the situation when a higher priority task's execution is delayed by lower priority tasks. Priority inversion can occur when there is contention for resources among tasks of different priorities. The duration of priority inversion could be long enough to cause tasks to miss their dead lines. Priority inversion cannot be completely eliminated. However, it is important to identify sources of priority inversion and minimize the duration of priority inversion. In this paper, a comprehensive review of the problem of and solutions to unbounded priority inversion is presented

    Physiology-Aware Rural Ambulance Routing

    Full text link
    In emergency patient transport from rural medical facility to center tertiary hospital, real-time monitoring of the patient in the ambulance by a physician expert at the tertiary center is crucial. While telemetry healthcare services using mobile networks may enable remote real-time monitoring of transported patients, physiologic measures and tracking are at least as important and requires the existence of high-fidelity communication coverage. However, the wireless networks along the roads especially in rural areas can range from 4G to low-speed 2G, some parts with communication breakage. From a patient care perspective, transport during critical illness can make route selection patient state dependent. Prompt decisions with the relative advantage of a longer more secure bandwidth route versus a shorter, more rapid transport route but with less secure bandwidth must be made. The trade-off between route selection and the quality of wireless communication is an important optimization problem which unfortunately has remained unaddressed by prior work. In this paper, we propose a novel physiology-aware route scheduling approach for emergency ambulance transport of rural patients with acute, high risk diseases in need of continuous remote monitoring. We mathematically model the problem into an NP-hard graph theory problem, and approximate a solution based on a trade-off between communication coverage and shortest path. We profile communication along two major routes in a large rural hospital settings in Illinois, and use the traces to manifest the concept. Further, we design our algorithms and run preliminary experiments for scalability analysis. We believe that our scheduling techniques can become a compelling aid that enables an always-connected remote monitoring system in emergency patient transfer scenarios aimed to prevent morbidity and mortality with early diagnosis treatment.Comment: 6 pages, The Fifth IEEE International Conference on Healthcare Informatics (ICHI 2017), Park City, Utah, 201

    Model and Integrate Medical Resource Available Times and Relationships in Verifiably Correct Executable Medical Best Practice Guideline Models (Extended Version)

    Full text link
    Improving patient care safety is an ultimate objective for medical cyber-physical systems. A recent study shows that the patients' death rate is significantly reduced by computerizing medical best practice guidelines. Recent data also show that some morbidity and mortality in emergency care are directly caused by delayed or interrupted treatment due to lack of medical resources. However, medical guidelines usually do not provide guidance on medical resource demands and how to manage potential unexpected delays in resource availability. If medical resources are temporarily unavailable, safety properties in existing executable medical guideline models may fail which may cause increased risk to patients under care. The paper presents a separately model and jointly verify (SMJV) architecture to separately model medical resource available times and relationships and jointly verify safety properties of existing medical best practice guideline models with resource models being integrated in. The SMJV architecture allows medical staff to effectively manage medical resource demands and unexpected resource availability delays during emergency care. The separated modeling approach also allows different domain professionals to make independent model modifications, facilitates the management of frequent resource availability changes, and enables resource statechart reuse in multiple medical guideline models. A simplified stroke scenario is used as a case study to investigate the effectiveness and validity of the SMJV architecture. The case study indicates that the SMJV architecture is able to identify unsafe properties caused by unexpected resource delays.Comment: full version, 12 page

    A Mobile Geo-Communication Dataset for Physiology-Aware DASH in Rural Ambulance Transport

    Full text link
    Use of telecommunication technologies for remote, continuous monitoring of patients can enhance effectiveness of emergency ambulance care during transport from rural areas to a regional center hospital. However, the communication along the various routes in rural areas may have wide bandwidth ranges from 2G to 4G; some regions may have only lower satellite bandwidth available. Bandwidth fluctuation together with real-time communication of various clinical multimedia pose a major challenge during rural patient ambulance transport.; AB@The availability of a pre-transport route-dependent communication bandwidth database is an important resource in remote monitoring and clinical multimedia transmission in rural ambulance transport. Here, we present a geo-communication dataset from extensive profiling of 4 major US mobile carriers in Illinois, from the rural location of Hoopeston to the central referral hospital center at Urbana. In collaboration with Carle Foundation Hospital, we developed a profiler, and collected various geographical and communication traces for realistic emergency rural ambulance transport scenarios. Our dataset is to support our ongoing work of proposing "physiology-aware DASH", which is particularly useful for adaptive remote monitoring of critically ill patients in emergency rural ambulance transport. It provides insights on ensuring higher Quality of Service (QoS) for most critical clinical multimedia in response to changes in patients' physiological states and bandwidth conditions. Our dataset is available online for research community.Comment: Proceedings of the 8th ACM on Multimedia Systems Conference (MMSys'17), Pages 158-163, Taipei, Taiwan, June 20 - 23, 201

    PALS/PRISM Software Design Description (SDD): Ver. 0.51

    Get PDF
    This Software Design Description (SDD) provides detailed information on the architecture and coding for the PRISM C++ library (version 0.51). The PRISM C++ library supports consistent information sharing and in- teractions between distributed components of networked embedded systems, e.g. avionics. It is designed to reduce the complexity of the networked sys- tem by employing synchronous semantics provided by the architectural pat- tern called a Physically-Asynchronous Logically-Synchronous (PALS) system.unpublishednot peer reviewe
    corecore